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• Develop a predictor of high plasma 

current disruptions using ensembles of 

regression trees trained with low 

plasma current data

• Explore methods of stacking the 

predictions of multiple types of 

regression ensembles.

Objective

• Disruption events occur in tokamaks when the plasma 

current rapidly decreases to zero.

Disruptions

Data Reduction Process

• Regression trees group frames into terminal nodes, “leaves”, by 

a series of decisions:

• At each level, the parameter value which reduces the mean 

squared error of the disruptivity predictions is determined.

• In each final leaf, the disruptivity value predicted is the mean 

of the values in that leaf.

• Four ensemble methods employed using the scikit-learn [6] 

machine learning package for the Python programming 

language:

• Bootstrap aggregating (Bagging) [7] trains trees in parallel using 

subsets of the same size as the full training set, drawn with

replacement.

• Random Forests [8] extend the bagging method by choosing

split candidates from a random subspace of the parameters.

• Extremely Randomized Trees (Extra Trees) [9] further extend

random forests by choosing the best split from a random set of 

uniform splits, from a random subspace of the parameters.

Regression Tree Ensembles

Future Work
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Machine Learning Prediction of High-Current Disruptions with Low-Current Training Data

• Repeat with data spanning a wider range of 

plasma currents.

• Develop robust weighting algorithm that combines 

strengths of AdaBoost and Random Forests.

• Optimize parameter list.

• Perform cross-device analysis with normalized 

parameters.

• Train with 1-d radial profile data.

• Study cases where predictions fail.

• Disruptions can lead to “runaway” electrons, which 

cause significant damage to plasma-facing components.

• Time series data for 29 plasma parameters from 630 

disrupting shots and 500 non-disrupting shots are 

collected.

• Time frames are created for each parameter by 

splitting the time series data into 100 ms windows.

• For disruptive shots, disruptivity target values are 

created using a sigmoid activation function:

• Ensembles of regression trees are trained with low-

current data using k-fold cross validation.

• A disruptivity prediction is made for each high-

current frame using the trained ensembles.

• Accuracy is evaluated at a series of disruptivity

thresholds between 0 and 1. 

Results
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• 93% success rate with 3.2% false positive 

predictions for AdaBoost with scaled parameters

• Using scaled parameters almost halved the false 

positive predictions at 90% success rate.

• Non-boosting methods were less successful than 

AdaBoost was, but they were more robust.

• Low success rates of other algorithms precluded 

accuracy improvements from stacking 

regressors.
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Disruption Prediction
• Complex, nonlinear interactions between 

parameters preclude pure physics-based 

disruptors.

• Machine learning techniques for pattern 

recognition are often employed.

• Artificial Neural Networks (ANNs) used at JET [1], 

ASDEX [2], ADITYA [3], and DIII-D [4] classify 

disruptions with signals available in real-time.  

• ANNs are “black boxes”; prediction methods are 

not transparent.

• Classification and regression trees [5] offer a 

more transparent approach to prediction.

• Challenges to solve before ITER: 

• Develop an accurate predictor without 

having existing database of high plasma 

current shots at ITER

• Develop a predictor which highlights 

patterns in parameters of interest for 

disruption modeling 

Low-Current Frames

k-fold cross validation:

With k=10, low-current data is split into 10 folds.  

Ten ensembles are trained, each with a different 

fold excluded from the training set. The final 

prediction is the mean of the ensembles’ 

predictions.

• Adaptive Boosting (AdaBoost) [10-11] progressively trains 

an ensemble of weak learners by emphasizing and 

improving the worst predictions in the previous iteration.

• Each frame is split into sub-frames (whole, halves and thirds).
• For each sub-frame, the mean, variance, and trend are 

calculated.
• The coefficients of a cubic polynomial fit are calculated from 

the data of the whole frame.
• Thus, one frame has 638 associated values in the dataset (29 

parameters, each with 22 values).
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